26 research outputs found

    Optimized adaptive enrichment designs

    Get PDF
    Based on a Bayesian decision theoretic approach, we optimize frequentist single- and adaptive two-stage trial designs for the development of targeted therapies, where in addition to an overall population, a pre-defined subgroup is investigated. In such settings, the losses and gains of decisions can be quantified by utility functions that account for the preferences of different stakeholders. In particular, we optimize expected utilities from the perspectives both of a commercial sponsor, maximizing the net present value, and also of the society, maximizing cost-adjusted expected health benefits of a new treatment for a specific population. We consider single-stage and adaptive two-stage designs with partial enrichment, where the proportion of patients recruited from the subgroup is a design parameter. For the adaptive designs, we use a dynamic programming approach to derive optimal adaptation rules. The proposed designs are compared to trials which are non-enriched (i.e. the proportion of patients in the subgroup corresponds to the prevalence in the underlying population). We show that partial enrichment designs can substantially improve the expected utilities. Furthermore, adaptive partial enrichment designs are more robust than single-stage designs and retain high expected utilities even if the expected utilities are evaluated under a different prior than the one used in the optimization. In addition, we find that trials optimized for the sponsor utility function have smaller sample sizes compared to trials optimized under the societal view and may include the overall population (with patients from the complement of the subgroup) even if there is substantial evidence that the therapy is only effective in the subgroup

    Recent advances in methodology for clinical trials in small populations : the InSPiRe project

    Get PDF
    Where there are a limited number of patients, such as in a rare disease, clinical trials in these small populations present several challenges, including statistical issues. This led to an EU FP7 call for proposals in 2013. One of the three projects funded was the Innovative Methodology for Small Populations Research (InSPiRe) project. This paper summarizes the main results of the project, which was completed in 2017. The InSPiRe project has led to development of novel statistical methodology for clinical trials in small populations in four areas. We have explored new decision-making methods for small population clinical trials using a Bayesian decision-theoretic framework to compare costs with potential benefits, developed approaches for targeted treatment trials, enabling simultaneous identification of subgroups and confirmation of treatment effect for these patients, worked on early phase clinical trial design and on extrapolation from adult to pediatric studies, developing methods to enable use of pharmacokinetics and pharmacodynamics data, and also developed improved robust meta-analysis methods for a small number of trials to support the planning, analysis and interpretation of a trial as well as enabling extrapolation between patient groups. In addition to scientific publications, we have contributed to regulatory guidance and produced free software in order to facilitate implementation of the novel methods

    The Precise Bending Rod Technique

    No full text

    The music trade

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:5990.446(25) / BLDSC - British Library Document Supply Centre25. ed.GBUnited Kingdo

    Optimizing Trial Designs for Targeted Therapies

    No full text
    <div><p>An important objective in the development of targeted therapies is to identify the populations where the treatment under consideration has positive benefit risk balance. We consider pivotal clinical trials, where the efficacy of a treatment is tested in an overall population and/or in a pre-specified subpopulation. Based on a decision theoretic framework we derive optimized trial designs by maximizing utility functions. Features to be optimized include the sample size and the population in which the trial is performed (the full population or the targeted subgroup only) as well as the underlying multiple test procedure. The approach accounts for prior knowledge of the efficacy of the drug in the considered populations using a two dimensional prior distribution. The considered utility functions account for the costs of the clinical trial as well as the expected benefit when demonstrating efficacy in the different subpopulations. We model utility functions from a sponsor’s as well as from a public health perspective, reflecting actual civil interests. Examples of optimized trial designs obtained by numerical optimization are presented for both perspectives.</p></div

    Strong biomarker prior and a small market with no biomarker costs (Case 2).

    No full text
    <p>See the legend of <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0163726#pone.0163726.g001" target="_blank">Fig 1</a>.</p

    Weak biomarker prior and a small market with no biomarker costs (Case 2).

    No full text
    <p>See the legend of <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0163726#pone.0163726.g001" target="_blank">Fig 1</a>.</p
    corecore